THE TKSESH DATABASE

AND INFORMATION EXCHANGE IN THE EGYPTOLOGICAL
COMMUNITY

SERGE ROSMORDUC

Tksesh is an integrated philological system for the Egyptologist. It is a mul-
tiplatform editor, database and dictionary. The core of the system is a hiero-
glyphic editor. Edited texts constitute a searchable full text database, which
can be referenced by a dictionary system, via hyperlinks. The dictionary can
handle complex definitions by multiple authors. This communication briefly
presents Tksesh-characteristics, and then discusses the issues it raises con-
ceming electronic information exchange in Egyptology: data format, co-
operative sharing of work, and referencing other’s works.

Introduction

The object of this commuaication is a database system called Tksesh. It is
intended as a full desktop for the philologist. The idea is that one should be
able to use it to enter data associated with philological work, such as hiero-
glyphic transcriptions, transliterations, translations, lexicological work,
notes, references about other works, etc.

Initial Motivation

The motivations which led to the realisation of Tksesh were numerous. First,
we had a number of tantalizing examples of databases in the domain of clas-
sical studies, like the TLG or the Perseus Project.! The interest of these re-
alisations as exploratory tools was self-evident. Second, from a computer
science research point of view, we thought it was interesting to consider
what improvement automated language processing could bring to such lan-

) TLG - Thesaurus Linguae Graecae: www.tlg.uci.edu/; PER - Perseus Project:
www.perseus.tufts.edu/. Further articles: S.BILLET, Apports a [l'acquisition
interactive de connaissances contextuelles, Thése de doctorat de 1'Université
Montpellier [I (another approach of automated transliteration), Montpellicr 1995,
S. ROSMORDUC, Analyse morpho-syntaxique de textes non ponctués. Thése de doctorat,
Ecole normale supérieure de Cachan, Cachan 1996; S. MEKNAVIN,
P. CHAREONPORNSAWAT and B. KUSIRIKUL, Feature-based Thai Word Segmentation, in:
Natural Language Processing Pacific Rim Symposium 1997, Phuket 1997, 182-186.

144 SERGE ROSMORDUC

guage databases. The third motive we had was that we were interested in
document structure, from a computer science point of view. And philological
works are very complex documents. In particular, referencing is an ubiq-
uitous phenomenon. To say it in a few words, a typical philological study is
full of links: links between the parts of the work, notably between the vari-
ous texts and the corresponding notes, and links between different works:
comments on other studies on the same subject, references to dictionaries, to
parallel passages, etc. Computers are rather good at linking. Indeed, they are
much more practical for this than paper, hence their potential interest.

Objectives of the System

Besides the goal of writing an interactive environment for philological work,
we also want Tksesh to be a testbed for NLP (Natural Language Processing)
techniques. Due to its architecture, Tksesh can be used as a toolbox for
building new applications, provided we write a good technical documenta-
tion. /n fine, our most important ambition is simply to increase the number of
electronically available ancient Egyptian texts. Software has a rather limited
life span; on the other hand, computer data can be adjusted for new needs.

Outline of Tksesh

The Tksesh software contains a number of elements, designed to function
together. These elements are both quite independent, as far as they provide
very different features, and intimately connected, as far as most elements
refer to the others.

The central element of Tksesh is a hieroglyphic editor, which was de-
signed with speed and ease of use as design principles. This editor is used for
entering texts which then constitute a full text database. This database can be
searched for words or sequences of hieroglyphs. Now, this is an interesting
lexicological tool, but it is a bit coarse. If used alone, its interest is currently
limited for two reasons. The first is that such a tool is really powerful if the
text database is huge, and we haven’t got enough data (yet ?). The second
one is that words often need to be discussed, related to other words, and so
on. In other terms, a plain database doesn’t replace a good dictionary (the
reverse is also true). For this reason, Tksesh also includes a dictionary editor,
which allows one to search and enter structured dictionary entries.

THE TKSESH DATABASE 145

The Hieroglyphic Editor

Tksesh hieroglyphic editor was primarily designed for entering texts in the
database. This design decision has got a number of consequences. For in-
stance, the system doesn’t support printing (although the texts are in Manue!
de Codage format and can be read in software like Winglyph). In general,
priority was given to features relevant from a linguistic database point of
view over presentation features. The text’s purpose was not to be an elec-
tronic facsimile of the original documents. However, this approach has its
limit, and as time goes by, Tksesh's graphical possibilities are improving.

The editor system is based on the Manuel de Codage. Basically, one en-
ters codes for the signs, or selects them in the menus. Grouping can be done
from the menus, from shortcuts, or by typing Manuel codes like " : " or "#* ",
However, the system ensures the final result is a correct Manuel de Codage
file. For example, it’s not possible to forget a parenthesis or the end of a
cartouche.

The strong point of Tksesh as far as typing goes is that it is tolerant about
codes. Transliterations are not limited to the list of the Manuel de Codage;
instead, the system tries to do something reasonable. The signs from
GARDINER list have been entered with their phonetic values. When the user
types a transliteration, the system proposes a sign. If the resulting sign is not
the expected hieroglyph, a press on the spacebar will propose a new one. For
example, if one types “mr”, he will get > . If he wants the pyramid-sign
(024), he will press “space” a few times, and get /. Next time “mr” is en-
tered, the system will remember and propose 024 first. Even better, when
the list of possible signs is exhausted, the system looks in the dictionary, for
words having the said transliteration. Thus, typing “p3” and spacebar will
first propose % then ¥ and finally 3 B\, fetching the word from the
dictionary. If the user stops here, the following uses of “p3” will get him the
definite article, which is a nice feature when you type Late Egyptian texts.
The proposed list is cyclic, and further presses of the spacebar will go back
to the first proposal.

The Dictionary Editor

Introduction
The next complex part of Tksesh is its dictionary system. It allows one to
query already existing entries (currently looking for either a transliteration, a
translation, or a hieroglyphic word), and to create new ones. The ultimate
goal is to allow sharing of these dictionary entries between Tksesh users.

We started writing it as a simple lexicon, with three fields: “translitera-
tion”, “spelling”, “translation”, the latter being free text. But it soon came

146 SERGE ROSMORDUC

out that a richer structure would be interesting. Considering the amount of
work behind a dictionary’s data, it’s worth taking the time and pain to or-
ganize it. A real dictionary entry is something both complex and very struc-
tured. Entering it as free text is not a very good option, because its structure
is lost to the computer. The human reader might be able to reconstruct it, the
system won't. Much automated processing that would be possible with a
well structured lexicon would be impossible. On the other hand, we wanted a
versatile format, suitable for many users and many needs. The kind of
information that can be found in real diction-aries ranges from simple
translation to whole encyclopaedic articles on the words, including cultural
information. Finally, we wanted an extensible structure, which would allow
new kinds of data to be added later, while keeping the old files.

Structure of the Dictionary

The dictionary format is formal enough to be usable by a computer; yet it
still allows a variety of definition styles. To achieve this, the entries are
coded like tagged text, with a precise structure. We have tested its versatility
by entering a few definitions from a number of different paper dictionaries,
like FAULKNER, WILSON’S Ptolemaic lexikon, etc...The fields in the diction-
ary are of roughly three types: base fields, which contain one type and only
one type of information (for example, a transliteration), complex fields, that
can contain mixed information (e.g. text in transliteration and hieroglyphs at
the same time), and finally organisational fields, like the group and comment
fields.

Example Dictionary Entry

The figure below represents the entry for the word 3w!. This entry corres-
ponds to a number of meanings for the word: “extended”, “long”, “de-
ceased”, etc... The group fields are used to structure the entry. Groups are
marked both by indentation and by « and » quotes. The whole entry is con-
sidered as a group. Groups can be nested, to represent sub-meaning of a
words, derived words, and so on. The basic point is that if a group contains
multiple fields of the same kind, let’s say multiple transliterations, they are
supposed to be variants. In the case of translations, this would mean near-
synonymous meanings. In the above example, this can be seen at two places:
the two translations “extend” and “stretch out™ are taken as synonymous, and
for the meaning “to be long™, both spelling are supposed to be equivalent.
When some tmportant information (transliteration, spelling, for example)
1s not available in a group, it is supposed to be inherited from its parent
group. For example, the adjective-verb meaning be /ong, which has the

THE TKSESH DATABASE 147

same transliteration as the head word, but different determinatives, inherits
its transliteration, but changes the translation and the spelling.

Then comes the expression “Ib=f 3w”. Expressions and composite words
are a tricky problem, whose representation might need some improvement.
At the time being, we have a number of tags that can be used in expressions
to represent the currently defined word, an animate, or an inanimate. The
other words might be free text, or explicitly transliterations of words in
which cases they are indexed. (For instance, in the current case, a search for
the word “ib” will retrieve the current definition).

Fig. 1 Dictionary Entry

148 SERGE ROSMORDUC

References

In theory, it should be possible to link every occurrence of a word to its
meaning in the dictionary. In practice, it would be interesting, but with two
caveats. First, this linking would be an interpretative work. Hence, the need
to allow more than one linking for a given occurrence. Conversely, the dic-
tionary itself is an open work, and new entries can correspond to words
which occur in previously analysed texts.

In fact, a real dictionary needs selected examples (while exhaustive
search should remain a possibility). The Tksesh reference system is used for
this. References are hypertext links to the text database. An important feature
is that references are given in Egyptologist readable format. That is, it’s
possible in Tksesh to refer to a text passage. One of our projects is to allow
more than one reference system for a text, when a text has multiple designations.

The Note Editor

As the dictionary editor is a structured text editor, we decided to use the
same system for more general texts. This editor allows one to type short
notes, with text references, hieroglyphs, etc. In the future, these notes should
be searchable.

The Translation Editor

This part of Tksesh will be the central working area of the system. The cur-
rent version is a bit crude: one can type a text’s transliteration and transla-
tion. It’s a reasonable system if one works on only one version of a text.

However, for texts which have variants, this is not sophisticated enough.
Thus, the next version will be more complex.

Full Text Search Facilities

A full-text database function is meant to be searched. Searchable data in-
clude translations, transliterations, and of course the hieroglyphic texts. One
can use any of these to search for a word. The hieroglyphic search is rather
robust. It can cope with words which span more than one line, it knows
about similar signs (like the rope and the quail chick for w), etc. As far as
hieroglyphic texts are concerned, we intend to add improvements when time
allows. In particular, we should be able to use the dictionary, which often
contains variant spellings for one word. This is another example of the bene-
fits of linking the dictionary to the rest of the system.

THE TKSESH DATABASE 149

Fig. 2 Font Editor

The Font Editor

The current version of Tksesh includes a font editor, which allows one to
create new signs or edit old ones.

Tksesh as a Toolkit

Tksesh is available in source form, and, even better, most of it is in 7CL,
which is an interpreted language. It means that it’s relatively easy, and free,
to use parts of Tksesh to build other programs. The facilities provided by the
package include a simple database, and of course a hieroglyphic edi-
tor/display. Tksesh is also multiplatform, which means it could be used, for
instance, to write a CD ROM interface.

Thsesh and Automated Transliteration

The automated transliteration system in Tksesh is a rule-based system (which
is currently undergoing major improvements). The basic ideas for the system
were already described in a previous article.?

2 S.ROSMORDUC, Traitement automatique du langage naturel en moyen égyptien, in:
R. VERGNIEUX (ed.), Xiéme conférence Informatique et Egyptologie, Bordeaux 1996, 97-

103.

150 SERGE ROSMORDUC

Ms F. KERBOUL? developed a working model and a rule database which
were promising. The current version, written in Prolog, is able to transliter-
ate hieroglyphic words with a reasonable rate of success. We are developing
a new version which will work on full texts, not only on words.

The basic principle of the system is the following one: rewriting rules de-
scribe the possible interpretation for groups of signs. For instance, the fol-
lowing three rules:

2.X/[A,B] -> [A,B] (400)
3.X/(Aa)] -> (A) (380)

state respectively that:

- a bilateral sign reading AB, followed by a uniliteral sign reading B, can
be read AB,

- abilateral sign reading AB can be read AB,

- auniliteral sign reading A can be read A.

Of course, these rules are contradictory. If you find the chain mn:n, you can
read it either by using rule 1, in which case you get mn, or by using rules 2
and 3, in which case you get mnn. The solution we choose here is to give
each rule a cost (here 150, 400, and 380). The preferred solution is the one
with the least cost. For instance, here, we will prefer mn (cost 150) to mnn

(cost 780).
Yet, the rules has exceptions. For instance, ir:r should be read irr. In this
case, it’s sufficient to write a new rule:

4, "ir"/I[i,r], "r"/Ir] -> [i,r,r] (100)

To ease determinatives analysis, word limits are explicitly represented. Thus,
it’s possible to write rules like:

5. det, end -> [] (500).

which states that a sign which can be a determinative should be interpreted
as one at word end.

3 F. KERBOUL, Translitération automatique des hiérolgyphes. Rapport de stage de 'ENSTA,
Paris 1997.

THE TKSESH DATABASE 151

The system might of course make mistakes. A nice feature is that it’s
technically possible to get, not only “the” best solution, but the n best solu-
tions, if needed. Thus, in case of necessity, it would be possible to present
the user with a sorted choice of candidate answers.

Information, Exchange and Formatting

In this part, we will discuss the data model which underlies Tksesh. The
exact data description will be detailed in Tksesh technical documentation, in
order to ensure the perdurability of the user data.

Thksesh User Model

Tksesh is both a software and data. The texts and the dictionary entries
which come with the software are integral part of Tksesh. One of the ideas
we had when creating the software was that users could contribute data
without too much effort. The most needed kind of data is of course hiero-
glyphic texts. But the possibility exists to share dictionary entries. Ulti-
mately, it will be possible to distribute any kind of data entered into the base.
Of course, distribution of data will be a user choice.

This kind of cooperative development leads to a number of problems.
First, the authors of any contribution should be identified, just as in paper
publications. Second, the existence of multiple contributors should not lead
to data inconsistency in the base. This might happen, for example, if two
users created the same entry, or if one user destroyed an entry used by an-
other.

The two problems have solutions. First, any data submitted by a user is
identified by the user key, which ensures both user identification and the
impossibility for two users to create the same entry. Second, data, once
submitted to the main database, can’t be changed, even by its author. This is
a bit annoying, but it’s the only logical way to go. If data which has been
distributed could be modified, inconsistencies could appear. Let’s suppose
user A has submitted an entry in the dictionary, and that this entry has then
been referred to by user B. Now, if A could change his entry, B’s reference
could become false. This kind of problem is of course not unheard of in the
database world, but the chosen solution seems to be the lesser evil.

Of course, if user A is unhappy about his previous entry, he can still pro-
pose a new entry on the same subject, as he would have done for a paper.
Note that this rule only stands as far as structure is concerned. Very small
changes which won’t modify other entries might be done (for instance,
spelling corrections).

152 SERGE ROSMORDUC

Data Model

What Should there be in a Hieroglyphic Database ?

Most of the texts we entered in the database have a hieratic original. For
these, the current encoding is fine. Truly, one loses a number of information,
but a computer text is not a facsimile. However, for stelas, and illustrated
documents in general, much information is lost. One would want, for exam-
ple, to link utterances to the associated figure. The point is that a minimal
encoding of iconography and of relations between iconography and text
would be valuable. One also needs to add comments about the hieroglyphs
themselves, in particular when the reading is dubious.

Dictionary Structure

The current dictionary structure has a nice property: it will be easy to trans-
late into XML. However, we need to change it a little. By now, only a com-
plete entry can be identified by a reference. But one sometimes needs to refer
to one particular characteristic of a word: a precise meaning, a written form,
etc. Thus, in the next version of Tksesh, everything will have an identity. In
particular, every group, and anything in a group will have a unique ID.

Current Projects for Tksesh

Tksesh will be subject to a major rewrite in the near future. The current ver-
sion is functional, but should be considered more as a model of things to
come. The first “real” version will be numbered 1.0. The main changes will
be that the data will be a lot more structured. In particular, it will be possible
to reference explicitly most data in the base, in a sounder way. To give but
one example, it is currently only possible to refer to a dictionary entry as a
whole. The next version will allow to reference sub-definitions.

Another point for Tksesh 1.0 will be the use of XML as a representation
and exchange language. Of course, translators from the previous data file
formats will be provided.

Parallel Editor

A typical philological work has a rather complex structure, much more
complicated than the simple text/transliteration/translation trilogy which is
supported by the current translation editor.

We had first tried to use the hieroglyphic editor facilities, and to encode
all parallel variants in the same hieroglyphic file. This is not a good solu-
tion: it isn’t easy to add texts and it isn’t clean, as it mixes more than one
level of interpretation. More, it doesn’t allow to distinguish between minor

THE TKSESH DATABASE 153

variations and important ones. Plus, a philological work is of limited interest
without its associated notes and comments.

So, we started designing a editor which would support multiple source
texts. Text editions use two ways to mark variants. Some, like for instance
the Lesestiicke, indicate variants in footnotes, using either an « ideal » text or
one of the sources as basis. Others give a synoptic edition of all texts (for
instance DE BUCK’s Coffin Texts).

The first solution is fine for noting small variants, mainly at sign level. It
doesn’t scale up well, and depends on the choice of the base text. The sec-
ond solution is more expensive as parts of the texts are reduplicated. How-
ever, it fits better in the context of a text database, as all texts are considered
equals. Another advantage is that its easier, from both a computer and ergo-
nomical point of view to consider large variants than small ones. So, we will
segment our texts in sentences, verses, or short paragraphs.

The next problem is to decide what should go in a segment, and how
segments should be organised. We have chosen to allow one to associate
more than one translation to a given hieroglyphic text, more than one hiero-
glyphic text to one translation, and so on. To distinguish between important
and secondary variants, we have used the same idea as in the dictionary:

grouping.

B o> Neor 2o 2

swAt pw m Hr n awn-ib

xaAUQk-?l__.k.hgq E

swAt]l pw m Hr n xm=-xt |
commentary

= £ E] =

Fig. 3 Variamt Editor

In figure 3, we show three variants of a passage. The first two differ by a
small graphical detail, but the third contains a significant change, the word
‘wn-ib being replaced by Am-ht. So the first two variants are in one group,
and the third in the other. The upper transliteration applies to the two texts
from the first group, the lower transliteration and the comment to the last

154 SERGE ROSMORDUC

text. Grouping can also be nested. The idea is that if a group contains two
data of the same kind, they are more or less considered to be equivalent. If
two data of the same kind are in different groups, they are considered sig-
nificantly different. For instance, if we put two translations in the same
group, they are supposed to be different equivalent wordings (perhaps in
different languages). If one hesitates between two disagreeing translations,
one should put them in different groups.

Another question is whether or not we should allow concurrent seg-
mentations. This would be logical, but we have decided not to do it, for the
sake of simplicity and ergonomy. So if one thinks of more than one possible
segmentation for a text, one should either make segments big enough to
encompass the whole problematic area, or write more than one analysis.

An important feature of this system is that hieroglyphic texts are not
physically included in the document. Instead, we store references. The texts
are simply kept in the text database.

The system should also allow one to add notes, about the whole segment
or a small part of it, comments, lemmatisation, etc.

Conclusion

We hope this presentation will raise an interest in the software, and perhaps,
who knows, will encourage people to contribute data to it. We hope to make
it really productive very soon.

Appendix

TCL/TK

TCL/TK is a programming language developed by JOHN OUSTERHOUT at
Cambridge University (USA) and then in the SUN research department. It is
a simple, powerful, cross-platform language, specially designed to be em-
bedable in programs written in compiled languages like C or Pascal. Tksesh
is based on a number of extensions, written in C, to TCL/TK. It runs under
UNIX and Windows 95. Due to the flexible nature of TCL, it is possible to
use Tksesh to write little applications that would need to display hieroglyphs.

Availability

You can download Tksesh on http:/www.iut.univ-paris8.fr/~rosmord/TKSESH.
The system is available free of financial charges, as “textware”: if the system
is of some use to you, please contribute some texts. It would be definitely
better to ask which texts are needed before sending them.

	pages
	db 00.tif—db 09.tif
	db 00.tif
	db 01.tif
	db 02.tif
	db 03.tif
	db 04.tif
	db 05.tif
	db 06.tif
	db 07.tif
	db 08.tif
	db 09.tif

	db 10.tif—db 11.tif
	db 10.tif
	db 11.tif

